Multi-objective Optimization of Impedance Parameters in a Prosthesis Test Robot

نویسندگان

  • Poya Khalaf
  • Hanz Richter
  • Antonie J. van den Bogert
  • Dan Simon
چکیده

We design a control system for a prosthesis test robot that was previously developed for transfemoral prosthesis design and test. The robot’s control system aims to mimic human walking in the sagittal plane. It has been seen in previous work that trajectory control fails to produce human-like forces. Therefore, we utilize an impedance controller to achieve reasonable tracking of motion and force simultaneously. However, these objectives conflict. Impedance control design can therefore be viewed as a multi-objective optimization problem. We use an evolutionary multi-objective strategy called Multi-Objective Invasive Weed Optimization (MOIWO) to design the impedance controller. The multi-objective optimization problem admits a set of equally valid alternative solutions known as the Pareto optimal set. We use a pseudo weight vector approach to select a single solution from the Pareto optimal set. Simulation results show that a solution that is selected for pure motion tracking performs very accurate motion tracking (RMS error of 0.06 cm) but fails to produce the desired forces (RMS error of 70% peak load). On the other hand, a solution that is selected for pure force tracking successfully tracks the desired force (RMS error ∗Research supported by NSF Grant 1344954. of 12.7% peak load) at the expense of motion trajectory errors (RMS error of 4.5 cm).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pareto design of fuzzy tracking control based on the particle swarm optimization algorithm for a walking robot in the lateral plane on slope

Many researchers have controlled and analyzed biped robots that walk in the sagittal plane. Nevertheless, walking robots require the capability to walk merely laterally, when they are faced with the obstacles such as a wall. In walking robot field, both nonlinearity of the dynamic equations and also having a tracking system cause an effective control has to be utilized to address these problems...

متن کامل

Multiple-objective Optimization of Serpentine Locomotion with Snake Robot by Using the NSGA

This paper starts with developing kinematic and dynamic model of a snake shape robot in serpentine locomotion and finishes with actual experimentation. At the beginning the symmetrical and unsymmetrical serpenoid curves are introduced. Kinematics and dynamics of a snake robot on flat and inclined surfaces are obtained for a general n-link robot. SimMechanics toolbox of MATLAB software is employ...

متن کامل

Variable Impedance Control for Rehabilitation Robot using Interval Type-2 Fuzzy Logic

In this study, a novel variable impedance control for a lower-limb rehabilitation robotic system using voltage control strategy is presented. The majority of existing control approaches are based on control torque strategy, which require the knowledge of robot dynamics as well as dynamic of patients. This requires the controller to overcome complex problems such as uncertainties and nonlinearit...

متن کامل

An Adaptive Impedance Controller for Robot Manipulators

A desired dynamic behavior of constrained manipulators can be achieved by means of impedance control and various implementations of fixed controllers have been proposed. In this paper, and adaptive implementation is presented as an alternative to reduce the design sensitivity due to manipulator mismatch. The adaptive controller globally achieves the impedance objective for the nonlinear dynamic...

متن کامل

Neuro-Optimizer: A New Artificial Intelligent Optimization Tool and Its Application for Robot Optimal Controller Design

The main objective of this paper is to introduce a new intelligent optimization technique that uses a predictioncorrectionstrategy supported by a recurrent neural network for finding a near optimal solution of a givenobjective function. Recently there have been attempts for using artificial neural networks (ANNs) in optimizationproblems and some types of ANNs such as Hopfield network and Boltzm...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015